Обратите внимание!

Опорные трансформаторы тока ТОП-0,66-I и шинные трансформаторы тока ТШП-0,66-I

Опорные трансформаторы тока ТОП-0,66-I и шинные трансформаторы тока ТШП-0,66-I

Класс напряжения: 0,66 кВ
Номинальный первичный ток: 1-600 А
Номинальный вторичный ток: 1-5 А
Класс точности: 0,5; 0,5S; 0,2; 0,2S

Опорные трансформаторы тока ТОЛ-110 III

Опорные трансформаторы тока ТОЛ-110 III

!!! НОВИНКА !!!

Класс напряжения: 110 кВ
Номинальный первичный ток: 20-2000 А
Номинальный вторичный ток: 1-5 А
Класс точности: 0,5; 0,5S; 0,2; 0,2S; 1; 3; 5P; 10P
Количество вторичных обмоток: 3, 4, 5 или 6

Проходные трансформаторы тока ТПОЛ-10 III наружной установки

Проходные трансформаторы тока ТПОЛ-10 III наружной установки

!!! НОВИНКА !!!

Класс напряжения: 10 кВ
Номинальный первичный ток: 50-1000 А
Номинальный вторичный ток: 1-5 А
Класс точности: 0,5; 0,5S; 0,2; 0,2S; 10P
Количество вторичных обмоток: 1 или 2

Трехфазный масляный силовой трансформатор ТМГ

Трехфазный масляный силовой трансформатор ТМГ

Класс напряжения, кВ: 6 или 10
Мощность, кВА: 100, 160, 250, 400, 630, 1000
Климатическое исполнение: У1; ХЛ1

Незаземляемый трансформатор напряжения НОЛ-20, НОЛ-35

Незаземляемый трансформатор напряжения НОЛ-20, НОЛ-35

Класс напряжения, кВ: 20 или 35
Напряжение основной вторичной обмотки, В: 100
Номинальная мощность, ВА, в классе точности: от 10 до 600

Опорные трансформаторы тока ТОЛ-10-11

Опорные трансформаторы тока ТОЛ-10-11

Класс напряжения: 6, 10 кВ
Номинальный первичный ток: 10-3000 А
Номинальный вторичный ток: 1-5 А
Класс точности: 0,5; 0,5S; 0,2; 0,2S; 10P
Количество вторичных обмоток: 2
Уменьшенные габаритные размеры - всего 210 мм в длину!

Заземляемый трансформатор напряжения ЗНОЛ.01ПМИ-35

Заземляемый трансформатор напряжения ЗНОЛ.01ПМИ-35

Класс напряжения, кВ: 35
Напряжение основной вторичной обмотки, В: 100/√3
Напряжение второй основной вторичной обмотки, В: 100/√3
(для четырех обмоточного трансформатора)
Напряжение дополнительной вторичной обмотки, В: 100/3
Номинальная мощность, ВА: от 10 до 600

Шинные трансформаторы тока ТШП-0,66-IV

Шинные трансформаторы тока ТШП-0,66-IV

Класс напряжения: 0,66 кВ
Номинальный первичный ток: 100-2500 А
Номинальный вторичный ток: 1-5 А
Класс точности: 0,5; 0,5S; 0,2; 0,2S; 5P; 10P

Заземляемые трансформаторы напряжения ЗНОЛ.01ПМИ со встроенными предохранительными устройствами

Заземляемые трансформаторы напряжения ЗНОЛ.01ПМИ со встроенными предохранительными устройствами

Класс напряжения, кВ: 10
Количество вторичных обмоток: 2
Напряжение вторичных обмоток, В: 100/√3; 100/3

Пункт коммерческого учета (ПКУ)

Пункт коммерческого учета (ПКУ)

Высоковольтные модули для пунктов коммерческого учета (ПКУ) в уменьшенных габаритных размерах.

 

 

Оценка качества изоляции высоковольтного оборудования с использованием характеристик частичных разрядов

Оценка качества изоляции высоковольтного оборудования с использованием характеристик частичных разрядов

Вдовик В. П., Сибирский НИИ энергетики, г. Новосибирск,
Бабкин В. В., Эткинд Л. Л., Свердловский завод трансформаторов тока, г. Екатеринбург

Качество изоляции высоковольтного оборудования контролируется при приемо-сдаточных испытаниях повышенным напряжением в объеме и нормах по [1, 2]. Однако, такие испытания относятся к разряду разрушающих методов контроля и позволяют ответить лишь на один вопрос - соответствует или нет изоляция установленным требованиям к кратковременной электрической прочности.
Опыт эксплуатации оборудования показывает, что надежность его определяют различного вида дефекты в изоляции, которые недостаточно эффективно выявляются и при изготовлении оборудования, и эксплуатации.
Наиболее эффективным методом выявления характерных для изоляции дефектов (в сочетании с другими методами, определенными в вышеуказанных стандартах) является метод измерения ЧР. Более 25 лет качество изоляции выпускаемых заводами силовых и измерительных трансформаторов 330 кВ и выше определяется с помощью характеристики ЧР - кажущегося заряда ЧР [3]. При разработке новых видов конструкций электро-изоляционных систем и совершенствовании технологии изготовления изоляции метод измерения ЧР может явиться основным инструментом оценки состояния изоляции. Эффек-тивность применения метода подтверждается и тем, что в ряде нормативно-технических документах различного уровня [1, 2, 3, 4, 5, 6 и др.] введены требования по применению этого метода для контроля качества изоляции во вновь разрабатываемых трансформаторах. 

Читать статью полностью (pdf)